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Chapter 2: Beam Dynamics
2.1 Conventions

 We use right-handed (z, Y, z) Coordinatés for a linear transport system
in which z is positive in the vert1ca.lly upward direction and z is positive in
the direction of the beam. We will use non.rela.txv1st1c formulae, relativistic
corrections being neghglble throughout thls work. There is often confusion
of the’ relativistic “beta.”, the ratio of a veloaty to the speed of light, with
the “beta function” of a,ccelerator physics, to be defined shortly. We will
denote the relativistic quantity by 8, = v/c, all other occurrences of 8 being
the accelerator function, which depends on the distance along the focusing
channel. All external focusing fields will be assumed linear in transverse
displacement, with a given periodicity in z; We will deuote derivatives with
respect to z by primes. Thus, for example, z' = 8z/dz. Finally, we will
denof;e the RMS values of a parameter, such as the beam offset in the z

dimension, by a tilde, as
i=/((z - 2)?).

- Space-charge will be assumed to be the only source of non-linear fields, and
for most of this work only the linear part of this field is considered. We will
assume a monoenergetic longitudinal beam distribution without acceleration.
The experimental apparatus incorporates electrostatic quadrupoles for beam
focusing, and we will write all focusing fields as electric fields, using mks
uuits. Recall that the magnetic equivalent involves substitution of v x B
for E. The space-charge field will be calculated locally as if it were purely

transverse, that is, neglecting beam envelope variations..

Periodic focusing systems are well-covered in the classic paper by Courant

and Snyder [26], which includes the limitations placed on circular machines
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by lens errors. A very comprehensive treatment of accelerators with good
mathematical background material is given by Briick [27]. Some additional

material on space-charge-dominated transport is included in Appendix A.
2.2 Envelope Descriptions
2.2.1 Béa.m with negligible space-charge

Ina périodic focusing channel with a restoriﬁg force linear in the trans-
verse displacements z and y, the equations of motion for a particle may be

written (neglecting self-fields) as

z2"(z) + K,(z)z(g) =0

, 2.1
¥"(2) + K,(2)y(2) =0, .

where K, and K, are periodic functions of z. For continuous solenoid focusing
K:(2) = Ky(z) = constant.; for an A.G. system K,(z) = —K,(z) = K(z).
Unless otherwise stated, we will assume henceforth that the focusing is from a
quadrupole array, so that the force constants in the z and y planes differ only
in sign. We will assume that the focusing array has the focus-drift-defocus-
drift (FODO) geometry, in which the lens fields reverse sign with each lens

along the array.

From Eqns. 2.1 one obtains the equations for the beam envelopes a(z)

and b(2) in the z and y planes, respectively, (as in Lawson [28], for example)

a"(z) + K(2)a(z) — ;36'(:;) ~0

) (2.2)

¥'(z) — K(2)b(z) — 3;(% =0,

where ¢, and ¢, are the “emittances” for the two planes, defined below.
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In an electrostatic system, the focusing field coefficient K (2) is given by

g OE,
mv? 3z’

K(z) =

which alternates in sign from lens to lens as E, changes sign. Here m is
the particle mass, ¢ its charge, and v, the zfvglocity. It is conventional in
the field of accelerator physics to call the (z,z') space “phase space,” even
though in mechanics that term is usually reserved for the space described
by the canonically conjugate variables (z, pz). (We will neglect all vector
potential effects, so that p, is purely the mechanical momentum.) The area
occupied by the beam in (z,z') space is 7 times the product of the semi-
axes of the ellipse. The product of the semi-axes of the ellipse is denoted by
€, and so the area of the beam in phase space is 7e. When quoted in the
(scaled) canonical phase space (z,p./mc), the area is mey. The quantity «
is called the “emittance,” or “unnormalized emittance,” and is the quantity
occurring in the envelope equations. The quantity ex = €8,~, where 3, and
~ are the usual relativistic factors, is called the “normalized emittance.” It
is particularly useful because it remains constant upon acceleration of the
beam, in the absence of nonlinear forces.

The “acceptance” is the transverse phase space area into which particles
may be injected without subsequent loss to the walls. A beam is called
“matched” in a periodic lattice if its envelope has the same periodicity as the
lattice. The envelope of a mismatched beam undergoes oscillations about the
matched solution, requiring a larger aperture for the same beam emittance.

The motion of individual particles in the z plane can be written

z(z) = \/B(2)C sin{y(2) + o}, (2.3)

where 9(z) is called the betatron phase function, B(z) is called the envelope
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function, and C and v, are constants depending upon the initial conditions.

The particle motion is broadly sinusoidal (“betatron oscillations”) with a

superposed higher frequency flutter component described by /B. The flutter
occurs as a particle is alternately focused and defocused by the lenses. The
average betatron motion is due to the average restoring force of the A.G.

channel.

For any given beam particle undergoing linear focusing, there is a constant

(§)2+(z'_2ﬁﬁ'.x)2=c, e

where £ is the envelope function defined above. For the outermost particles in

of the mof.ion, ;

phase space of a matched beam, C = e. The largest offset in z of any particle
is given by /f¢, so this quantity gives the radius of the beam. The particle
oscillation frequency in linear accelerators is usually characterized by oq in
units of degrees of phase advance per period (analogous to a wave-number),
often loosely called the zero—curfent “tune” of the lattice.

The individual particle motion we have been describing to this point is

referred to as “incoherent.” In addition one can have a “coherent” motion of

the beam about the axis if the beam is misaligned. In this case the centroid

of the beam oscillates about the axis with the betatron wave-number oy, as

if the beam were a macroparticle.
2.2.2 Beam with linear space-charge field included

In the ca.sekof azimuthally symmetric focusing, uniform in 2z, many distri-
butions which include self-fields in a self-consistent way may be written either
explicitly or implicitly [29], because the total energy is a constant of the mo-
tion. However, only one of these, called the “Kapchinskij-Vladimirskij” or

“K-V” distribution [30], is known to be generalizable to the case of periodic
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focusing, for which the transverse Hamiltonian is not a constant of the mo-

tion. The K-V distribution is a microcanonical distribution in terms of a

modified transverse Hamiltonian, based on the constant of the motion given
in Eqn. 2.4. That is, all the beam particles lieon a single surface in the to-
tal transverse phase space (z, 2’ , ¥,¥'). This particular distribution function
results in fa. uniform particle density within an elliptical boundary in (z,y)
space. This gives rise to linear space-charge fields, satisfying the requirements
for Eqn. 2;4 to give a constant of the motion. The envelope equations for the
two transverse planes are coupled by the self-ﬁeld, although the emittances ¢,
and ¢, ideally are independent constants. Denoting the beam radius in the z
plane by a(z) and in the y plane by b(z), we add the defocusing space-charge

term to Eqns. 2.2 and obtain the K-V envelope equations

a"(z) + K (z)q(z) =0

2Q &
a(Z) + b(Z) a’(2)

N . (2.5)
a@w 4" V) ~ K - o5y - g =

ﬂue%%om |

where Q =

= omeamv 7 in the nonrelativistic limit. We calculate the matched en-

velope parameters for our experiment by direct integration of these equations,
using the focusing field representation given in Appendix D.

Within this linear field model, a useful relation between the values of e,
0o, and the spacé;charge depressed “tune”, o, may bé found for a uniform

focusing channel. In this case, a = b and K is constant with no sign difference

between the dimensions, and we have

a"(z) + Ka(z) - aQ(z) T = 0. . (2.6)

elim
The matched beam envelope in a uniform focusing channel is constant, which
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we will denote by R. The trajectory equation for the particles in the matched

beam is

xn(z) +; K z‘(z) 222::(2) =0..

We see that the zero-current wave number k¢ for the particle oscillation is

given by ;ég = K, and the space-charge depressed value « is given by

If we further note tha.t the value for € is given by the product of the beam

radius and the maximum crossing angle of particles at the beam axis, ¢ = R%x,

then we may obtain the relation

Q

K? +2 fc—fco-—O

We use this result to obtain the proportxonahty (wntten in the penodlc chan-

nel notation given above)
- € 2 _ 2
o x —(o5g —0%).
I(ao o )

This is approximately valid for oy < 90°, and implies that if o much less than
0o, then o o (¢/I)o2. If 0y and the current are constant, then ¢ increases
monotonically with e. |

By perturbing Eqn. 2.6, we may calculate the frequency of envelope oscil-

~ lations for the envelope mode in which the two dimensions oscillate in-phase.
Denoting the perturbation by*‘& ,‘we obtain ' ‘
(e @Y |

6 =~ _4+3—]é=0. | 2.8
+(K+2R2+ R4) | (2.8)
We eliminate € in favor of the matched beam radius R by using Eqn. 2.6. By

using the expressions for kg and k above we obtain the envelope frequency k,
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using the periodic channel notation,
k* = 20} + 20°. (2.9)

This mode frequency will be used in Ch. 5. In the zero-current limit,
o — 0y, apd so k — 20,. This is because when the particles have executed
half of a Beta.tron oscillation, the envelope has executed one full oscillation.
The high-current envelope oscillation freqﬁency could have been written in
terms of the plasma frequency, showing explicitly the space-charge-dominated
nature of the mode in that limit. We have used the channel strength param-
eter oy, linearly related to the cold-beam plasma frequency, as may be seen

from Eqn. 2.7 by rewriting Q/R? in terms of w?.
2.2.3 RMS envelope description including nonlinear space-charge

An alternative envelope analysis has been given by Sacherer [31] and La-
postolle [14] in terms of various moments of the trajectory equation, averaged
over an arbitrary beam distribution. The resulting hiera.rchyk of coupled mo-
ment equations is examined for a low-order quantity which can be approxi-
mated from other considerations to close the chain of variables and equations.

The unnormalized RMS emittance is such a quantity, formally defined by

erms = V/{(z — 2)?)((«' - 7)?) — ((z—f)(x"—?»”, (2.10)

where both the brackets () and overlines denote an average ovér the distri-
bution. The nonlinear portionA of the total field drives the z variation of the
RMS emittance. The equations for the RMS radius of the beam in terms of
the linearized self-field and the RMS emittance are identical in form to the
K-V equations (Eqns. 2.5) with the restriction that the beam distribution
in (z,y) space must have elliptical symmetry. The RMS emittance is either

taken to be constant or is approximated in other simple ways from known
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behavior. For any beam with constant RMS emittance, the RMS beam en-
velope is well-modeled by the envelope equations. For a K-V distribution the
usual radius is equal to 2%, where Z is the RMS beam radius, and the usual
emittance, ¢, is equal to 4epms. We will identify 2z with the beam radius
~ca.lcula.ted from the envelope equations (Egns. 2.5), and will use 4egys for

the bea.m emittance.

2.3 Bore Réquirements as a Fﬁncf;ioh of Lens Strength '

A desxrable property of an accelera.tor for many apphca.tlons including
HIF is that the average current densn‘.y over the bore of the accelerator be
high. For a smgle beam of fixed current thls primarily 1nvolves minimizing
the maximum beam radius, a.lthough for multlple beams the packing fraction
for the beams withinA the bore is also important.The relationship between
lattice strength and envelope size differs considerably between emittance-
dominated and current-dominated beam transport, as we will now illustrate
using the thin-lens quadrupole lattice. Because of the symmetry, the maxi-
mum in the beam radius occurs in the focusing lens. For a thin-lens FODO
lattice with focusing period 2L, lens focal length +f, and no space-charge,
we obtain

1 + sin(oo/ 2)
sin op

Bmax = 2L (2.11)

where sin(oo/2) = L/2f. Note the divergence of fmax as 0o approaches 180°,
for which the particle becomes resonant with the focusing lattice. For given
values of € and L, the required beam aperture is minimized (for the thin lens

model) for oy =~ 76.3°.

In contrast, for an ideal zero-emittance beam with non-zero current, the
minimum in required aperture occurs at a lens strength well beyond the oq =

180° limit for zero-current beams (see Appendix A). The beam itself, viewed
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as a macroparticle, will become resonant with the focusing if oy is raised
too high, even though the individual particles experience a much weaker
overall focusing and do not become resona.nt with the external focusing as
in the zero-current case. This provides a great incentive to determine the
strongest lattice usable for high current transport. For low emittance, in
the absenée of collective instability, and with perfect alignment of the lattice
and beam, very high intensity beams could be transported. The different
response of the envelope to lens strength for emittance-dominated and for
current-dominated beams is due to the' much diﬁ'erént dependehce on the
beam radius of the space-charge défocusing term and the eﬁttmce term in

the envelope equations, Eqns. 2.5.



